LYNCH, DESIMONE & NYLEN, LLP

ATTORNEYS AT LAW 12 POST OFFICE SQUARE BOSTON, MASSACHUSETTS 02109 Telephone: (617) 348-4500 Facsimile: (617) 348-4545

JOHN M. LYNCH, P.C. ERNEST P. DESIMONE RICHARD A. NYLEN, JR. FREDERICK S. GILMAN STEPHEN W. DECOURCEY JOHN P. CARR SHANNON MICHAUD

OF COUNSEL

JAMES W. MURPHY WAYNE H. SCOTT

May 20, 2010

Via Email & First Class Mail

Matthew C. Ireland, Esq.
Assistant Attorney General
Environmental Protection Division
Attorney General's Office
100 Cambridge Street, 10th Floor
Boston, MA 02114

John A. Carrigan, Section Chief Solid Waste Management DEP-Northeast Regional Office 205B Lowell Street Wilmington, MA 01887

Re: Commonwealth of Massachusetts v. New Ventures Associates, LLC; Suffolk Superior Court, C.A. No. SUCV2006-00790; Response to Request for Closure and Post-Closure Estimates; Request for Release of Monies

Dear Attorney Ireland and Mr. Carrigan:

This office represents New Ventures Associates, LLC ("New Ventures") with respect to the above-referenced action. In accordance with Judge Cratsley's Order, enclosed please find the detailed explanation for the remaining closure and post-closure costs associated with the Crow Lane Landfill. The attachments are separated into two categories, closure costs and post-closure costs. You will note that the total closure costs are \$1,538,307 while the post-closure costs are \$603,200 for a total of \$2,141,507. The monies for the closure are based upon the current berm design with the rock buttresses referenced by the Department. The costs are based upon conservative estimates for berm construction, equipment and media.

New Ventures continues to be disappointed that the Department will not discuss the sequence of closure and berm approval and will not communicate except through letters and press releases. The Department's failure to discuss the closure of the Landfill and its decision to deny the berm design has delayed closure as New Ventures has stated for many months. The Department's recommended design of attaching a skirt to the berm prevents loaming and seeding of the Landfill. In addition to the closure figures, New Ventures has enclosed recent readings to document the significant drop in H₂S production due to closure. Finally, New Ventures has completed the repair of the limited FML damaged by the wind and is not aware of any odor complaints. The strength analysis performed on the FML and the Project Engineer's findings are attached.

Under the provisions of 310 CMR 19.051(8) New Ventures hereby requests the release of \$570,000 from the Financial Assurance Mechanism based upon the fact that New Ventures is in final closure and the remaining monies equal or exceed the necessary cost of closure and post-closure.

Please contact this office immediately with the authorization to release the monies from the FAM account.

Thank you.

Sincerely,

Richard A. Nylen, Jr

RAN/kad Enclosures

cc:

Mr. William Thibeault/NVLLC

Mr. Richard Chalpin Michael W. Dingle, Esq. Mr. Michael Quatromoni

H:\Thibeault, William\SUCV2006-0790\Letter to Ireland & Carrigan 05-20-10.doc

COST ESTIMATE REMAINING CLOSURE OF CROW LANE LANDFILL MAY 2010

1 COMPLETE BASIN 2 BLASTING AND EXCAVATION

7

Balance remaining on D&R contract to completE basin 2	\$30,000	
	Sub-total	\$30,000
CONSTRUCT BERMS		
Materials:		
South berm fill 1,575 cy @ \$10/cy	\$15,750	
West berm slope flattening 4,835 cy @ \$15/cy	\$72,525	
Rock butress boulders 2,226 cy @ \$18.75 cy	\$41,738	
Rip rap slope stabilizer 6,821 cy @ \$18.75	\$127,894	
Fill for MSE 7,800 cy @ \$15/cy	\$117,000	
	\$374,907	
Equipment (2 month duration)		
Dozer @ \$10,000/mo	\$20,000	
Roller @ \$8,000/mo	\$16,000	
2-Excavators @ \$10,000/mo each	\$40,000	
2- rock trucks @ \$8,000/mo each	\$32,000	
	\$108,000	
Equipment (MSE Berm-2 month)		
Dozer @ \$10,000/mo	\$20,000	
Roller @ \$8,000/mo	\$16,000	
Rock truck @ \$8,000/mo	\$16,000	
Loader @ \$8,000/mo	\$16,000	
2-Excavators @\$10,000/mo each	\$40,000	
	\$108,000	

Labor (Berm Construction 2 months)

1-Foreman, 2-Laborers @ \$20/hour (avg)

COST ESTIMATE REMAINING CLOSURE OF CROW LANE LANDFILL MAY 2010

\$19,200 \$32,000 \$51,200	\$38,400 \$32,000 \$70,400)TAL \$712,507		\$339,000	\$75,000		\$20,000	\$32,000	\$16,000	\$68,000	\$14,400	\$38,400	\$32,000
3x8 weeks x 5days/per week x 8 hours/per day @ \$20 4-Equip. Operators x 8 weeks x 5 days per week x 8 hours @25	Labor (MSE construction-2 month) 1-Foreman, 5-Laborers @ \$20/hour (avg.) 6x8 weeks x 5days/per week x 8 hours/per day @ \$20 4-Equip. Operators x 8 weeks x 5 days per week x 8 hours @25	SUBTOTAL	PLACE DRAINAGE AND VEGETATIVE LAYERS (2 month duration) Materials	Sand 22,600cy @ \$15	Loam 15,000cy @ \$15	Equipment (2 MONTHS)	Dozer @ \$10,000/mo	2-RockTrucks @ \$8,000/mo	Loader @ \$8,000/mo	Labor (3 Months)	Grading Forman 1 x 12 weeks x 40 hours/per week @ \$30.00	Laborers 4 x 12 weeks x 40 hours/per week @ \$20	4-Equip. Operators x 8 weeks x 5 days per week x 8 hours @25

ന

Seed, mulch and maintain to 1st growth

COST ESTIMATE REMAINING CLOSURE OF CROW LANE LANDFILL MAY 2010

14.2 acres @ \$ 5,000 per acre	SUBTOTAL	\$71,000	\$637,800
STORMWATER DRAINAGE, LANDFILL SURFACE Materials 4" to 8" crushed rock 1.100cv @ \$20cv		\$22,000	
		\$44,000	
1-Gradall @ \$10,000/mo		\$20,000	
1-Rock truck @ \$8,000/mo		\$16,000	
1-Dozer @ \$10,000/mo		\$20,000	
1-Loader @ \$8,000/mo		\$16,000	
		\$72,000	
Labor (2-month)			
1 Foreman, 4 Laborers @ \$20/hr (avg.)			
5 x 8 weeks x 40 hours/per week @ \$20		\$32,000	
4-Equip. Operators x 8 weeks x 5 days per week x 8 hours @25		\$32,000	
		\$64,000	
25	SUBTOTAL		\$158,000

TOTAL REMAINING CLOSURE COST AS OF 05-14-10

\$1,538,307

COST ESTIMATE
POST CLOSURE
CROW LANE LANDFILL*
MAY 14, 2010

UPDATED CLOSURE/POST CLOSURE COST ESTIMATE BASIS OF ESTIMATE AND ASSUMPTIONS PURSUANT TO COURT ORDER MARCH 30, 2010, PARAGRAPH 4

a) The length of time the LFG control system is proposed to operate:

5 YEARS, THIS IS BASED ON THE EXPERIENCE OF New Ventures consultants with similar closures and with the present conditions. Specifically once the landfill is capped, i.e. the flexible membrane is in place, the source of water is removed. The landfill capping was completed in the fall of 2009 except for a small portion. Remaining moisture will be used up in degradation process, then gas production will cease. Experience at other landfills indicates that this occurs one to two months to 1 year post capping. 5 year period carried greatly exceeds empirical experience. Attached are the most recent gas production numbers that show the dramatic drop in gas production following capping at the landfill with the noteworthy reductions in the wells associated with the 2006/2007 first phase closure.

b) The amount of pretreatment media that will be utilized including the purchase and disposal costs:

The current use of media is 100cy/year. Estimate 2 years @ 100cy/year, 3 years @ 50cy/year (see time frame in a) above) for a 350cy total. The media that is currently on hand at the Wood Waste yard in Everett, exceeds this amount and is set aside for post-closure. Further, New Ventures believes that the 95% destruction rate in the Appendix should be replaced with a ceiling (such as 700 ppm) eventually as the H₂S levels reduce over time.

c) The amount and cost for the collection and disposal of condensate:

Condensate is produced more heavily in the winter with lesser amounts during other 3 seasons. Condensate is stored in a 10,000 gallon tanker on site, emptied once a year with significant room to spare. Post-closure costs assume a conservative 10,000 gallon per year @ 0.20 per gallon for 5 years. \$10,000 total.

d) The cost of the maintenance and replacement of the pretreatment tanks:

COST ESTIMATE POST CLOSURE CROW LANE LANDFILL* MAY 14, 2010

One trained operator @ 8 hours/week x 52 weeks x 5 years @ \$20.00/hour = \$41,600. Experience at the site is that the three (3) containers last about 3 years before corrosion causes erosion and vacuum leaks. Allow for two rounds of container replacement during the 5 years of operation. 6 new containers @ \$5,000 per container = \$30,000. \$71,600 total.

e) The cost of the maintenance and replacement of the enclosed flare:

Allow maintenance/part replacement @ \$10,000 per year x 5 years = \$50,000. Working life of the flare far exceeds the 5 years it will be needed, flare replacement \$120,000. While other equipment will need to be replaced, the flare is in good working condition.

- f) The labor cost to operate, maintain and monitor the operation of the LFG control system:
 - Mainentance will include a daily visit to determine that the pretreatment system is operating. 8 hours/week x 52 weeks = 416 hours @ \$20/hour = \$8,320/year; Misc. parts replacement \$5,000 per year; \$13,320 x 5 years = \$66,600 total.
- g) The quantity and cost of propane as an auxiliary for the enclosed flare:
 - Current cost of propane as the auxillary fuel is \$4,000 per year. We anticipate reduced usage as H_2S levels drop. Conservative estimate \$5,000 @ 5years = \$25,000 total.
- h) The inspection and maintenance of the landfill cover including mowing, storm water controls, erosion
 - Control and general maintenance involves a person on-site once per month. The conservative estimate 1 day/month x 8 hrs/day x 12 mo/yr \$20/per hour = \$1,920/yr. Materials and equipment allowance \$2,000/yr. Mowing to be outsourced (even swap for hay). Use 5,000/yr total.
- The collection and disposal of leachate including the volume and disposal cost:
 - Only 1 leachate collection tank (#5) remains on-site. New Ventures anticipates leachate flow to be nonexistent after 1 year from the date of final membrane cover based upon experience. Leachate is
- j) The itemized cost of conducting environmental monitoring of the landfill including labor for sample collection and report preparation and the sample analytical costs:

\$14,200/event Annual sampling 1st 5 years - \$71,000 2 year frequency next 10 years - \$71,000 5 year frequency final 15 years - \$28,400 Total - \$170,400

COST ESTIMATE POST CLOSURE CROW LANE LANDFILL* MAY 14, 2010

1	OPERATE LFG SYSTEM (5yrs)	
	b) Replacement Media - On Hand	\$0
	c) Condensate - collect and dispose \$2,000/year x 5 years	\$10,000
	d) Maintain/replace pretreat tanks	\$71,600
	e) Enclosed flare Maintenance \$10,000/yr x 5	\$50,000
	Repair allowance for flare	\$50,000
	f) Operate, maintain, monitor LFGcollection system \$13,320/yr x 5 yrs	\$66,600
	g) Propane alternate fuel	\$25,000
	by Propune diterrate rasi	
2	INSPECT/MAINTAIN LANDFILL COVER/DRAINAGE SYSTEMS	
_	h) \$5,000/year allowance x 30 yrs	\$150,000
	11) \$5,000, 100, and 100.	
3	COLLECTION/DISPOSAL OF LEACHATE	
_	i) included in item 1c above	
	· · · · · · · · · · · · · · · · · · ·	
4	AS-BUILT DRAWINGS	\$10,000
•		
5	ENVIRONMENTAL MONITORING	\$170,000
Ŭ	J) Estimate per Sitec	
	of accounted by a country	
	TOTAL POST CLOSURE COST	\$603,200
	IOINEL OO. GEOOGIE COO.	

^{*}Note: See basis of post-closure estimate attached after this page.

Collection System Monitoring Report

	6am					and the same of th					
Date:	677/2010			Barometric Preseure:		30.04	Performed Ldana g	dens g			
fy sather.	clear	Temp	\$	ı							
1				Ges Readings					Weithe	Weithread Data	
l scation	ř	්රා	ර්	Batance Ces	H ₂ S	Temp	CO (femp>130°F)	Header Pressure	Well	Valve Position	Flogs
	(%)	(%)	(%)	(%)	(mdd)	(F)	(mdd)	(inches)	(inches)	(% Open)	(cfm)
- ARE	19.1	25	5.6	50.2	trace.	1650		8	1	0.5	300
Ž.	33.1	29.8	0.1	34.3	2,000	98		0.2	0.5	ዕ.5	
2002	33.3	29.8	2.6	34.3	1,500	<u>58</u>		9:0	9.0	5.5	
545	41.7	31.6	4.2	25.1	200	92		7.5	6.0	0.5	
	38	34.5	0.1	27.3	2,050	922		9.0	0.9	0.5	
5,8%2	50.9	37.3	0.1	11.2	1,500	98		0.4	0.4	0.5	
(i)	40.8	36.9	0.2	22	2,000	<u>98</u>		6.0	0.5	0.5	
(1)	26.6	33.0	0.1	40.5	23,500	85		0.1	0.1	0.5	
8,41	4.6	16.6	ო	75.7	2,400	9 92		1.0	0.1	9.0	
6,40	58.1	41.2	0.0	Ö	1,200	58		0.1	0.1	0.5	
2	44.1	43.8	0.1	12.1	6,000	58		6.4	6.0	0.5	
	34.6	33.3	2.2	29.9	6,000	85		0.1	0.3	5.0	
C	34.6	38.4	0.1	26.5	4,000	<u> </u>		5'0	9:0	6.5	
E 18	50.1	44.0	0.1	5.6	27,000	\$8		2.0	7.0	0.5	
P. W.	19.5	34.5	0.3	46.3	22,000	58		0.3	6.3	0.5	

Ö Ö Collection System Monitoring Report Crow Lane Landfill 8 Sy 24,000 4.5 52.7 E STATE n S

O.05

a subsidiary of Geocomp Corporation

Client:	New Ventures As	sociates		
Project Name:	Crow Lane Landf	il		
Project Location:	Newburyport, MA	\		
GTX #:	9825	Tested By:	bfs	
Test Date:	04/29/10	Checked B	rmt	
Sample ID:	GMBR: 40 THDPE	Existing #1		
Description:	Black, 40 mil text	tured THDPE		

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Garater Manutan	Machine	Direction	Cross Mach	ine Direction
Specimen Number	Thickness, mil	Tear Resistance, lb	Thickness, mil	Tear Resistance, Ib
1	39.8	43	44.9	37
2	43.6	39	43.6	38
3	44.6	38	47.3	39
4	41.6	40	45.4	36
5	48.2	43	50.6	38
6	40.6	38	41.4	39
7	40.7	39	47.7	36
8	46.9	45	47.2	38
9	47.8	38	44.8	37
10	39.6	39	48.3	35
Average	43.3	40	46.1	37
Standard Deviation	3,36	2.5	2.61	1.4

a subsidiary of Geocomp Corporation

Client:	New Ventures As	sociates		
Project Name:	Crow Lane Landfi	[]		
Project Location:	Newburyport, MA			
GTX #:	9825	Tested By:	bfs	
Test Date:	04/29/10	Checked B	rmt	:
Sample ID:	GMBR: 40 THDPE	Existing #2		
Description:	Black, 40 mil text	ured THDPE		

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Specimen Number	Machine	Direction	Cross Machine Direction		
Specimen Number	Thickness, mil	Tear Resistance, Ib	Thickness, mil	Tear Resistance, Ib	
1	45.1	38	41.3	35	
2	45.9	40	46.7	38	
3	45.7	42	49.4	36	
4	49.0	41	49.5	37	
5	42.3	44	45.1	36	
6	47.0	38	42.3	37	
7	43.9	42	42.3	36	
8	43.9	43	46.7	39	
9	43.0	39	44.3	38	
10	46.0	38	43.1	36	
Average	45.2	41	45.0	37	
Standard Deviation	2.00	2.2	2.92	1.2	

a subsidiary of Geocomp Corporation

Client:	New Ventures As	sociates	
Project Name:	Crow Lane Landf	ill	
Project Location:	Newburyport, MA	\	
GTX #:	9825	Tested By:	bfs
Test Date:	04/29/10	Checked B	rmt
Sample ID:	GMBR: 40 THDPE	New #1	
Description:	Black, 40 mil tex	tured THDPE	

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Constitution Name Is	Machine	Direction	Cross Machine Direction		
Specimen Number	Thickness, mil	Tear Resistance, Ib	Thickness, mil	Tear Resistance, lb	
1	49.0	43	48.8	39	
. 2	52.2	46	49.4	37	
3	49.3	42	43.8	39	
4	47.0	42	49.1	38	
5	53.7	44	47.3	38	
6	50.1	44	49.1	40	
7	43.0	42	46.7	38	
8	46.9	41	42.6	39	
9	43.9	41	49.7	39	
10	46.5	40	43.4	36	
Average	48.1	43	47.0	38	
Standard Deviation	3.39	1.9	2.75	1.1	

a subsidiary of Geocomp Corporation

Client:	New Ventures Associates		
Project Name:	Crow Lane Landfill		
Project Location:	Newburyport, MA		<u> </u>
GTX #:	9825	Tested By:	bfs
Test Date:	04/29/10	Checked By:	rmt
Sample ID:	GMBR: 40 THDPE Existing #1		
Description:	Black, 40 mil textured THDPE		

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123
Grip Separation: 2.5 in.

Testing Speed:

2.0 in./min.

Grips:

ATS pneumatic

Temperature, F: 66.2 - 73.4

Die Type:

IV

				YIELD			BREAK		
Direction	Specimen Number	Thickness, mil	Tensile S	Strength,	Elongation,	Tensile :	Strength,	Elongation,	
Direction Machine	TTG137DC1		ppi	psi	%	ppi	psi	%	
	1	45.9	128	2789	14	151	3303	565	
	2	43.7	118	2708	10	128	2937	469	
	3	46.2	121	2628	13	142	3069	552	
	4	44.7	128	2870	17	140	3133	553	
Machine	5	44.2	125	2828	14	149	3370	612	
	Average	44.9	124	2765	14	142	3162	550	
	Standard Deviation	1.1	4.2	97	2.5	9.1	175	51.6	
	1	43.1	130	3016	13	107	2478	276	
	2	51.7	129	2501	12	99	1922	217	
	3	48.0	123	2560	10	104	2163	248	
	4	48.7	134	2749	13	109	2235	229	
Cross Machine	5	40.2	129	3220	13	115	2858	239	
	Average	46.3	129	2809	12	107	2331	242	
	Standard Devlation	4.6	3.9	305	1.3	5.8	355	22.3	

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppl = pounds per inch psl = pounds per square inch

a subsidiary of Geocomp Corporation

Client: New Ventures Associates Project Name: Crow Lane Landfill Project Location: Newburyport, MA Tested By: bfs GTX #: 9825 Test Date: 04/29/10 Checked By: rmt Sample ID: GMBR: 40 THDPE Existing #2 Black, 40 mll textured THDPE Description:

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123
Grip Separation: 2.5 in.

Testing Speed:

2.0 in./min.

Grips:

ATS pneumatic

Temperature, °F: 66.2 - 73.4

Die Type:

IV

			YIELD			BREAK		
Direction	Specimen Number	Thickness, mil	Tensile S	Strength,	Elongation,	Tensile S	Strength,	Elongation,
Direction Machine Cross Machine	Humber		ppi	psi	%	ppi	psi	%
	1	46.7	121	2585	15	124	2657	473
	2	45.9	125	2729	13	145	3166	546
	3	42.8	125	2932	14	122	2845	467
	4	43.3	123	2845	14	142	3290	567
Machine	5	41.8	125	2990	15	142	3391	551
	Average	44.1	124	2816	14	135	3070	521
	Standard Deviation	2.1	2.0	163	0.8	11.2	309	47.1
	1	42.9	141	3289	14	114	2660	203
	2	41.2	132	3210	10	121	2944	549
	3	43.3	135	3110	12	127	2927	488
	4	44.4	135	3053	14	97	2189	233
Cross Machine	5	44.6	130	2924	13	110	2472	330
	Average	43.3	135	3117	13	114	2638	361
	Standard Deviation	1.3	4.1	141	1.7	11.3	319	153

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch

a subsidiary of Geocomp Corporation

Client:	New Ventures Associates			
Project Name:	Crow Lane Landfill			
Project Location:	Newburyport, MA			
GTX #:	9825	Tested By:	bfs	
Test Date:	04/29/10	Checked By:	rmt	
Sample ID:	GMBR: 40 THDPE New #1			
Description:	Black, 40 mil textured THDPE			

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123
Grip Separation: 2.5 in.

Testing Speed:

2.0 in./min.

Grips:

ATS pneumatic

Temperature, °F: 66.2 - 73.4

Die Type:

I۷

				YIELD				
Direction	Specimen Number	Thickness, mll	Tensile S	Strength,	Elongation,	Tensile S	Strength,	Elongation,
Direction Machine	Hathbel		ppl	psi	%	ppi	psi	%
	1	43.1	120	2786	13	135	3137	515
	2	42.4	128	3011	15	140	3300	510
	3	42.9	122	2840	13	173	4037	662
	4	43.1	121	2817	15	146	3383	557
Machine	5	43.5	126	2892	14	156	3586	567
	Average	43.0	123	2869	14	150	3489	562
	Standard Deviation	0.4	3.2	88	1.0	15.0	347	61.2
	1	41.1	134	3260	12	123	3008	488
	2	43.1	135	3129	12	120	2780	483
	3	45.3	137	3035	10	111	2453	390
	4	43.3	135	3108	13	130	3009	499
Cross Machine	5	44.3	128	2893	10	131	2957	513
	Average	43.4	134	3085	11	123	2841	475
	Standard Deviation	1.6	3.4	135	1.3	8.2	237	48.7

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch

a subsidiary of Geocomp Corporation

Client:	New Ventures As	New Ventures Associates				
Project Name:	Crow Lane Landf	ill				
Project Location:	Newburyport, MA	١				
GTX #:	9825	Tested By:	bfs			
Test Date:	04/29/10	Checked B	rmt			
Sample ID:	GMBR: 40 THDPE Existing #1					
Description:	Black, 40 mil tex	tured THDPE				

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

	Machine	Direction	Cross Mach	ine Direction
Specimen Number	Thickness, mil	Tear Resistance, lb	Thickness, mil	Tear Resistance, lb
1	39.8	43	44.9	37
2	43.6	39	43.6	38
3	44.6	38	47,3	39
4	41.6	40	45.4	36
5	48.2	43	50.6	38
6	40.6	38	41.4	39
7	40.7	39	47.7	36
8	46.9	45	47.2	38
9	47.8	38	44.8	37
10	39.6	39	48.3	35
Average	43.3	40	46.1	37
Standard Deviation	3.36	2.5	2.61	1.4

a subsidiary of Geocomp Corporation

Client:	New Ventures As	sociates			
Project Name:	Crow Lane Landf	ill			
Project Location:	Newburyport, MA	١			
GTX #:	9825	Tested By:	bfs		
Test Date:	04/29/10	Checked B ¹	rmt		
Sample ID:	GMBR: 40 THDPE Existing #2				
Description:	Black, 40 mil tex	tured THDPE			

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

	Machine	Direction	Cross Mach	ine Direction
Specimen Number	Thickness, mil	Tear Resistance, Ib	Thickness, mil	Tear Resistance, Ib
1	45.1	38	41.3	35
2	45.9	40	46.7	38
3	45.7	42	49.4	36
4	49.0	41	49.5	37
5	42.3	44	45.1	36
6	47.0	38	42.3	37
7	43.9	42	42.3	36
8	43.9	43	46.7	39
9	43.0	39	44.3	38
10	46.0	38	43.1	36
Average	45.2	41	45.0	37
Standard Deviation	2.00	2.2	2.92	1.2

a subsidiary of Geocomp Corporation

Client:	New Ventures As	New Ventures Associates				
Project Name:	Crow Lane Landfi	ill				
Project Location:	Newburyport, MA	.				
GTX #:	9825	Tested By:	bfs			
Test Date:	04/29/10	Checked B	rmt			
Sample ID:	GMBR: 40 THDPE New #1					
Description:	Black, 40 mil text	tured THDPE				

Initial Tear Resistance of Plastic Film and Sheeting by ASTM D 1004

constant rate of extension (CRE) tensile testing machine

Cassimon Alumbar	Machine	Direction	Cross Mach	ine Direction
Specimen Number	Thickness, mil	Tear Resistance, lb	Thickness, mil	Tear Resistance, lb
1	49.0	43	48.8	39
2	52.2	46	49.4	37
3	49.3	42	43.8	39
4	47.0	42	49.1	38
5	53.7	44	47.3	38
6	50.1	44	49.1	40
7	43.0	42	46.7	38
8	46.9	41	42.6	39
9	43.9	41	49.7	39
10	46.5	40	43.4	36
Average	48.1	43	47.0	38
Standard Deviation	3.39	1.9	2.75	1.1

Comments:

a subsidiary of Geocomp Corporation

Client:	New Ventures Associates			
Project Name:	Crow Lane Landfill			
Project Location:	Newburyport, MA			
GTX #:	9825	Tested By:	bfs	
Test Date:	04/29/10	Checked By:	rmt	
Sample ID:	GMBR: 40 THDPE Existing #1			
Description:	Black, 40 mil textured THDPE			

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123
Grip Separation: 2.5 in.

Testing Speed:

2.0 in./min.

Grips:

ATS pneumatic

Temperature,°F: 66.2 - 73.4

Dle Type:

IV

			AIETD			BREAK			
Direction	Specimen Number	Thickness, mil	Tensile S	Tensile Strength,		Tensile Strength,		Elongation,	
			ppl	psi	%	ppl	psi	%	
	1	45.9	128	2789	14	151	3303	565	
	2	43.7	118	2708	10	128	2937	469	
	3	46.2	121	2628	13	142	3069	552	
	4	44.7	128	2870	17	140	3133	553	
Machine	5	44.2	125	2828	14	149	3370	612	
	Average	44.9	124	2765	14	142	3162	550	
	Standard Devlation	1.1	4.2	97	2.5	9.1	175	51.6	
	1	43.1	130	3016	13	107	2478	276	
	2	51.7	129	2501	12	99	1922	217	
	3	48.0	123	2560	10	104	2163	248	
	4	48.7	134	2749	13	109	2235	229	
Cross Machine	5	40.2	129	3220	13	115	2858	239	
	Average	46.3	129	2809	12	107	2331	242	
-	Standard Deviation	4.6	3.9	305	1.3	5.8	355	22.3	

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch

a subsidiary of Geocomp Corporation

Client:	New Ventures Associates			
Project Name:	Crow Lane Landfill			
Project Location:	Newburyport, MA			
GTX #:	9825	Tested By:	bfs	
Test Date:	04/29/10	Checked By:	rmt	
Sample ID:	GMBR: 40 THDPE Existing #2			
Description:	Black, 40 mil textured THDPE			

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123
Grip Separation: 2.5 in.

Testing Speed: 2.0 in./min.

Grips: ATS pneumatic

IV

Temperature, F: 66.2 - 73.4 Die Type:

			YIELD			BREAK			
Direction	Specimen Number	Thickness, mil	Tensile Strength,		Elongation,	Tensile Strength,		Elongation,	
			ppi	psi	%	ppi	psi	%	
	1	46.7	121	2585	15	124	2657	473	
	2	45.9	125	2729	13	145	3166	546	
	3	42.8	125.	2932	14	122	2845	467	
	4	43.3	123	2845	14	142	3290	567	
Machine	5	41.8	125	2990	15	142	3391	551	
	Average	44.1	124	2816	14	135	3070	521	
	Standard Deviation	2.1	2.0	163	0.8	11.2	309	47.1	
Cross Machine	1	42.9	141	3289	14	114	2660	203	
	2	41.2	132	3210	10	121	2944	549	
	3	43.3	135	3110	12	127	2927	488	
	4	44.4	135	3053	14	97	2189	233	
	5	44.6	130	2924	13	110	2472	330	
	Average	43.3	135	3117	13	114	2638	361	
	Standard Deviation	1.3	4.1	141	1.7	11.3	319	153	

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in. ppi = pounds per inch psi = pounds per square inch

a subsidiary of Geocomp Corporation

Client:	New Ventures Associates		
Project Name:	Crow Lane Landfill		
Project Location:	Newburyport, MA		
GTX #:	9825	Tested By:	bfs
Test Date:	04/29/10	Checked By:	rmt
Sample ID:	GMBR: 40 THDPE New #1		
Description:	Black 40 mil textured THDPF		

Tensile Properties of Nonreinforced Polyethylene and Nonreinforced Flexible Polypropylene Geomembranes by ASTM D 6693

Testing Machine: Instron 1123

Testing Speed:

2.0 in./mln.

Grip Separation: 2.5 in.

Grips:

ATS pneumatic

Temperature, F: 66.2 - 73.4

Dle Type:

	YI		YIELD	YIELD		BREAK		
Direction	Specimen Number	Thickness, mil	Tensile Strength,		Elongation,	Tensile Strength,		Elongation,
			ppl	psI	%	ppi	psi	%
	1	43.1	120	2786	13	135	3137	515
	2	42.4	128	3011	15	140	3300	510
	3	42.9	122	2840	13	173	4037	662
	4	43.1	121	2817	15	146	3383	557
Machine	5	43.5	126	2892	14	156	3586	567
	Average	43.0	123	2869	14	150	3489	562
	Standard Deviation	0.4	3.2	88	1.0	15.0	347	61.2
	1	41.1	134	3260	12	123	3008	488
	2	43.1	135	3129	12	120	2780	483
	3	45.3	137	3035	10	111	2453	390
	4	43.3	135	3108	13	130	3009	499
Cross Machine	5	44.3	128	2893	10	131	2957	513
	Average	43.4	134	3085	11	123	2841	475
	Standard Deviation	1.6	3,4	135	1.3	8.2	237	48.7

Comments:

yield gauge length = 1.3 in. break gauge length = 2.0 in.

ppi = pounds per Inch psi = pounds per square inch